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Gas-solid two-phase flows occur commonly in many natural and industrial

situations. Examples are blood flows, rocket exhaust plumes, pulverized

coal gasification and combustion, and sediment transport by air and water.

These flows are invariably turbulent and are characterized by the mutual

coupling between the solid particles and the gas phase. Contrary to passive

additives in a single-phase flow, the particles will change the flow

structure of the carrying fluid. Globally, metering and heat transfer data

[1,2,3] of two-phase flows shows discrepancy from the single-phase data.

Further, small scale turbulence structures are also affected. Solid

particles may attenuate the spreading rate and damp the turbulance intensity

in a jet flow [5,6]. The alternation of the turbulence structure was found to

depend on the particle size, the solid loading ratio as well as the physical

properties of the different existing phases.

In general, a complete theoretical treatment of two-phase flows is not

possible because of the lack of detailed understanding_of the physical

processes involved [7]. Previous analytical studies have not been very

successful, due in part to a lack of knowledge about the turbulent flow field

of the conveying gas which is a prerequisite to the solution of the two-phase

flow problem. Difficulties in theoretical analysis also arise from the

coupling between the two phases, i.e., the exchange of momentum, mass and

energy between phases. These coupling phenomena comprise a very complex

interaction which affects both the gas and particulate phases.

Consideration of the infinite variety of interfacial geometries and flow

regimes, various forms of non-equilibrium, and aggregation of particles

complicates the problem even further.

The inability of the theoretical analysis to account for all the

complicated interactions in two-phase flows is similar in the study of

single-phase turbulent flows two decades or so ago. An exact theory of

turbulence did not (and still does not) exist; however, using a combination of

theoretical equations, modeling assumptions, and experimental evidence,

mathematical models describing certain features of the flow were developed.

The field of turbulence modeling has subsequently been developed to the point

where single-phase turbulent flow fields can be predicted rather well using a

variety of turbulence models of varying complexity [8,9]. These advances

suggest that a similar combination of theory, experiment, and modeling could

be used to develop computational models capable of predicting two-phase

flows. However, extra sets of equations and correlations need to be

formulated and modeled for turbulent gas-solid flows. The purpose of this
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paper is to discuss and review the recent advances in two-phase turbulence

modeling techniques and their applications in various gas-solid suspension

flow situations. In addition to the turbulence closures, heat transfer

effect, particle dispersion and wall effects are partially covered here.

Because of the intrinsic, complex coupling between different species in

two-phase flows, there seems to be no "unified" set of governing equations

that can completely describe the flow field of two-phase media. However,

there are quite a number of different formulations in the literature from

which to begin. One approach, the so called "discrete" or "tracking"

approach, starts with an equation of motion for a single discrete particle in

a turbulent fluid flow field and the particle's trajectory is calculated.

For particles much smaller than the smallest scales (say Kolmogorov's

microscale) of turbulent motion and for which the solid's material density is

much greater than the conveying gas, the BBO equation (Basset, Boussinesq,

Oseen), which is the momentum equationof a single particle, can be reduced to

[i0]:

d i

-- vi - (ui - vi) + gi (i)
dt t,

Because the Eulerian velocity u i is a stochastic quantity when the conveying

gas flow is turbulent, this simple looking ODE cannot be solved analytically

due to its inherent nonlinearity.

However, progress has been made using this approach in conjunction with

the turbulence closure models which have been developed for single phase

flows. The basic strategy is to use the turbulence model to calculate the

fluid flow field assuming that no particles are present. This calculation is

used to generate the velocity in equation (i) after making suitable

assumptions regarding turbulent time scales, length scales and isotropy. To

account for the mutual coupling (or the "two-way" coupling [ii]) of mass,

momentum, and energy between phases, the extra source terms generated by

particles must be included in the Eulerian sets of governing equations for the

gas phase. In the mean flow fields, this can be achieved by the iterative

PSIC (particle-source-in-cell) technique developed by Crowe and co-workers

[12,13] or by thenon-iterative, transient numerical scheme of Dukowicz [14].

The discrete particle approach can also be extended to account for the

particle-turbulence interactions which have two aspects -- the turbulent

particle dispersion (the influence of fluid turbulence on the particles), and

the "modulation" effect [15] (the effect of particles on fluid flow

turbulence). These will be discussed in further detail in the next section.

In the non-discrete (continuum) approaches, two formulations are

commonly used; the first considers the gas-solid suspension to be represented

as a single inhomogeneous medium. The interactive forces between the phases

are taken account of by internal stresses which must be related by

constitutive equations to the bulk properties of the medium. Sets of

governing equations for this approach were first formulated by
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Barenblett [16] and described in detail in Monin and Yaglom [17]. This

approach was also used recently in heat transfer analysis of a gas-particle

pipe flow [18].

The other approach is the so-called "two-fluid" approach. This

approach regards the gas and particles as two inter-penetrating continua in

much the same way as the two species of a flowing binary mixture, for example.

Here, the cloud of particles is regarded as a continuum and the governing

equations are obtained by properly averaging the conservation equations over

a volume and expressing the equations in differential forms. Many authors,

namely Murray [19], Drew [20], Marble [21] and Ahmadi [22], have described the

two-phase flow based on the two-fluid formulation and applied it to some

physical processes. It is often not possible to formulate a general set of

governing equations for gas-solid two-phase turbulent flows due to the lack

of understanding and differences in interpretation of the physical processes

involved (for example, the "solid-phase pressure" term [23]). In order to

obtain theoretical relations of two-phase turbulent flows, several

assumptions have to be invoked to simplify the formulation. These are:

i. The particle phase is dilute (volume fraction of particles,

<< I) and is made up of particles spherical in shape and uniform in

size. The Darticle material density p= >> p_so that the model is valid

when pp : _ (p) . This assumption is required because we

ignore particle-particle collisions, the frequency of which increase

quadratically with loading. The uniformity of particle size reduces

the book-keeping in the formulation; extension to poly-dispersed non-

uniform size distribution is a straight forward matter for dilute

suspensions.

2. Both the particulate and fluid phases behave macroscopically as

continua. The fluid phase is Newtonian and both phases have constant

physical properties and do not undergo any phase change. The continuum

hypothesis assumes that the mathematical "points" are large enough to

contain many particles and fluid molecules to ensure a stationary

average. In order to satisfy the "dilute suspension" and continuum

assumptions simultaneously for particle phases, some stringent

restrictions regarding the number of particles in a smallest control

volume made up of Kolmogorov microscale, the distance between particles

to avoid direct inter-particle interactions, have been discussed

[10,24,25]. However, the continuum approach has proven to be

applicable also to situations which do not strictly meet such conditions

[26].

3. The mean flow is steady and incompressible. Molecular diffusion,

Brownian motion and gravity effects on the particulate phase are

negligible compared with turbulent diffusion. Electrical and magnetic

forces are not considered here.

With the above assumptions, we may adopt the governing equations

developed by Marble [21,27] andHinze [25] which are applicable to dilute gas-

particle flows. Marble used statistical averages for the particle cloud and

postulated the macroscopic governing equation for the gas phase. Continuity

equations are written for each phase:

ap

-- + -- (pUi) = 0 (2)

St aX i
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8pp @

+ (ppVi) = 0 (3)

8t 8X i

Here Pp is the mass of particles Dp_ ',_t volume of mixture (or "density" of

the particulate phase where P p = Ps¢, ¢is the particulate phase volume

fraction). The momentum conservation equations for each phase are:

8U i 8U i 8p a

p + puj - (Tij) + Fpi (4)

8t @xj @x i @xj

8v i av i

pp + ppvj - Fpi (5)

at 8xj

Here Fpi represents the force acting on the primary fluid per unit volume due

to the presence of the particle. Note that due to dilute assumption, the

multiplication of (i - _) by each term in equation (2) and (4) was replaced by

I. Of special note is that the values of ui'P' P that appear in the

continuum relations (2) and (4) are, in a sense, "smoothed" variables. The

detailed gas disturbance caused by the particle motions are omitted from the

instantaneous gas velocity vector U i. Since the gas velocity varies

strongly in the neighborhood of a particle that is moving through the gas, use

of these smoothed variables in continuity, momentum and energy relations

requires that all particle wakes or regions of immediate influence are

dissipated very rapidly over the gas control volume. Hinze [25] treats this

problem by attributing the forces around the particle as the external forces

and disregarding the modified velocity field around the particles. If this

external drag force follows Stokes law, then the fluid velocity u i in the

Stokes drag law is at "infinity", i.e., a large distance from the particle

center so that the detailed fluid motion in the neighborhood of the particle

is still not accounted for. However, the inadequacy of this model is not

important for small volume fractions of particles having a not too large

velocity relative to the gas. But for large volume fractions and cases in

which particles may form into groups by trailing another in its wake, large

regions of the flow may be inadequately modeled (c.f. [25] and [28]).

Several derivations concerning the two-fluid model equations have

appeared in the literature. The derivations include those of Hinze [29], Soo

[30], Drew and Segel [31], Ishii [32], Nunziato [33] and more recently, Roco

and Shook [34]. The resulting equations differ in various ways such as the

pressure gradient term for both gas and particulate phase, momentum source

term, and shear stress tensor of the secondary phase although general

constitutive equations relating stress and flow properties have not yet been

developed. However, for the low concentration limit of suspension flows of

small spherical particles, most of the derivations will recover similar

forms. For example, the theory proposed by Ahmadi [35] which was general to

the extent that it could be applied to both concentrated and dilute two-phase

flows could he shown to recover the theory of dusty gas as derived by Saffman

[36] in the low solid volume fraction range. The general expression for the

internal forces between solid and continuous phase is discussed by Truesdell

and Toupin [37] (also see [38]) and Drew and Segel [31]. The philosophical
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reasons for using the two-fluid continuum approach and the common feature of

dispersed two-phase flow systems can be seen in Drew's [20] review paper.

By performing the Reynolds decomposition and time averaging of

equations (2) (5), the following mean equations for statistically steady

flows result.

au i
- o

ax i

(6)

a pv i a (7)
-- pp,Vi,

ax i ax i

aui (8)aP a2ui 1 a

+ Lt ui,u j , + F

axj ax i axj axj p axj

av i av i a

"_pVj - pp'Vj ' (_pV i'v i _) (Vj pp'V i') - Fpi
OXj aXj axj axj

(9)

pUj -- p i

where some use of the continuity equations has been made in deriving

equations (8) and (9). As a consequence of dilute suspension, triple

correlations involving fluctuations in the particulate phase density are

considered negligible. At this point the mean interaction term _'. needs to

be specified. Empirical expressions for the interaction termsP_ave been

summarized by [39] for low and moderate solids concentrations. The

appropriate relationships are given by

i

_pi =- (i + 0.179_-_p + 0.013Rep)_p(V i -Ui) (i0)

t,

i

+ -- (i + (3/2)0.179 4 Rep + 0.113 x 2Rep)pp' (v i ' - Ui' )

t,

where
I ui - Vi I dp

Rep = (11)

2

and t, = dpps/18py (12)

We note that several turbulent correlations appear in equations (7) -

(9) in addition to the conventional Reynolds stress ulvl for the single-

phase flows. These terms arise from the velocity fluctuations and

fluctuality volume fractions of the particulate phase and represent the

turbulent momentum flux and mass flux of particles. To close the set of

governing mean equations, models are required for these second order
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correlations. The field of turbulence modeling for single-phase flows is a

rapidly expanding one and will form the two-phase closure models described

here.

T_>PK_SE Td_KKRI_E MDEEI/N_

The hierarchy of turbulence closure models has been received by Reynolds

[40], and recently in [8,9]. The proposals range in complexity from zero

equation models where the turbulent fluxes are modeled as if they were

molecular fluxes, with an eddy diffusivity related to mean flow structures to

Mean Reynolds Stress models where separate transport equations are solved for

each component of the turbulent flux vectors and tensors. Most two-phase

turbulence models follow the single-phase turbulence models for

incompressible flows closely; their modeling is discussed in the following.

The most common and simplest modeling technique is to assume a Newtonian

type constitutive equation for relating the turbulent fluxes to the mean

field through an eddy viscosity. For gas phase Reynolds stresses,

Ui;V j ' =- vfSij + 213 _ijk (13)

1 I _UJ _UJ 1where Si j is the mean rate of strain tensor of gas flows -- -- +

2 axj _x i

k = I/2 ui 'ui ' and vf is the eddy viscosity.

Depending on the level of complexity employed, the eddy viscosity could be

specified by zero-equation mixing length models, one-equation models or two-

equation models. Due to the presence of solid particles, the eddy viscosity

constructed by these models must take into account this effect.
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ZERO-EQUATION MODELS

Early theoretical studies [41 - 43] indicate that the presence of solid

particles decreases the eddy viscosity of the gas flows arising from

dissipation of turbulence energy at the interface between solid particles and

the fluid. These results lead several first-order closure schemes which

modify the eddy viscosity for the clean gas flow without suspension of solid

particles, v f0. For example, Owen [41] proposed

'f I P%-- i + --

Vfo P

for the case t,/t e -< i and

I
m

2
(14)

Vfo

1 +

1

i /i t,= t=l] (15)



for te/t , -> 1

This model has been used by Melville and Bray [44] for application in a

turbulent free jet of dilute gas-particle mixture and has been further

modified by Choi and Chung [45] and Chung et. al [46] for application in a

wall-bounded shear flow. Most closure models developed at this level

heavily involve empirical information and limiting case (loading ratio

approaching zero) analysis and, in most cases, ignore the effect of particle

size [47,48]. This level of models are very useful in engineering analysis

because of their simple forms. However, they fail to handle some important

effects, such as the "turbulence modulation", and besides, it is hard to

prescribe the "mixing length" and the effect of particle on the mixing length

scale. The next level of models, which incorporate a transport equation for

the turbulence kinetic energy, and thus the velocity scale, were developed in

the hope of providing additional generality and at the same time account for

the effect of particles on the turbulence structure.

ONE-EQUATION MODEL

An equation describing the dynamics of the gas-phase turbulence kinetic

energy can be derived from equations (4) and (8) by simple manipulations.

For statistically steady, high Reynolds number flows it is given

8k 8J i

Ui - + Pk - E + ui'Fpi (16)

8x i 8x i

Here

Pk = - Ui 'Uj

au i

8xj

is the rate of production of turbulence energy and

8u i , 8u i ,
is the rate of energy dissipation rate.

aXj aXj

' ' }
i ( p u i Ok

Ji = -- [ u i 'uj 'uj ' + 2v and2 p @x i

ui'Fpi the extra particle production (or dissipation) term, all per unit

of mass. Probably the first attempt to use a one-equation turbulence model

to study the two-phase flows is that of Dannon et. al [49]. They applied a k-£

closure model to a particle-laden axi-symmetric jet. The length scale i was

specified algebraically and was taken to be the same as that of a single-phase

jet. For the k-equation (16), the diffusion term and production term were

modeled following the conventional single-phase gradient-type modeling

technique. In their study, quasi-equilibrium (i.e. U i z V i ) and

mono-dispersed particles in Stokes regimes were assumed,
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which simplify the interaction terms Fp i =

kinetic energy equation becomes

pp(vi - ui)

t,

and the turbulence

@k @ I vf @k I I @Ui 2 k 312Ui - + Vf _ - C D --

@xi axi _k 8xi 8xj 1

(17)

(ui'vi' - ui'ui') 1 pp,u i,(vi, - u i,)
+ -- + --

p t, p t,

The triple correlation was neglected and the concern was the modeling of the

additional dissipation term created by the particle slip velocity at the

fluctuation level. This term is similar to the turbulence "modulation"

effect attributed to the inability of dispersed-phase particles to

completely follow turbulent eddy fluctuations at high frequency. This added

dissipation mechanism has been experimentally observed [2,5,6,50,51] and has

gained much attention in recent two-phase modeling studies.

The fluctuating velocity correlation of this term is bounded by

0 _< - (ui'v i ' -ui,ui, ) < 2k (18)

where the two bounds represent the cases where particles completely follow

the fluid (u! = v_) and stationary particles relative to the velocity

fluctuation _(v_ = 0). Dannon et. al [49] proposed a model that has the

correct limiting behavior

- (ui'v i' - ui'ui' ) = 2k [I - exp (-B(t,/T))] (19)

whereT = (_/£1_is the Kolmogorov time scale, and B is a model constant.

The use of the time scale r was argued [52] to be inappropriate since the

eddies contributing most to the correlation u_u---_are the energetic eddies

which have an integral time scale t e . Dannon et. al [49] indicated that this

model did not give good prediction due to a change in the structure of the

turbulence and the structure was represented by the length scale. As a

result, they had to arbitrarily modify the production and dissipation terms

to reflect the structural variations. Due to the difficulty of specifying

the length-scale distribution a priori in a flow and appropriate modeling for

particle effect, most workers have abandoned one-equation models in favor of

two-equation or even stress-equation models in which the length scale is

computed from a transport equation.
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TWO-EQUATION MODELS

Most studies in two-phase turbulence modeling utilizing a transport

equation for the turbulence length scale £' are based on a modeled equation

of the isotropic dissipation rate E; this equation can also be derived from

equations (2), (4), (8) by appropriate differentiation, multiplication and

averaging. The exact E-equation consists of 67 terms with particle's effect

accounted for [53]. For high Reynolds number flows and based on an order-of-

magnitude analysis [54], the groups representing the production of _ by

vortex stretching, the viscous destruction of g, and the diffusive flux of c

in the x i direction, which are not affected by particles, are usually modeled

following the single-phase k-_ model of Jones and Launder [55]. The

resulting modeled equation (except the extra particle destruction term)
becomes

a a v t a_ aU i _ e2

-- (Uje) ..... CEt ui'uj' C_-

axj axj _+ axj axj k k

au i' aFpi' ?p
+ 2v

8x k ax k p

(20)

The last term in the RHS of the above equation is the contribution from inter-

phase transport and is another main effort in two-phase modeling. This

equation is solved simultaneous with the k-equation to estimate the eddy

viscosity vt = C_ k2/_, Since the effects of particles are modeled through

the k and _ equations, C= is assigned 0.09 same as the single phase flows.

In the two-equatlon model level, there have been several proposals for

modeling the extra terms in the k and _ equation. Chen and Wood [52]

basically followed [49] and proposed exponential forms for added dissipation

terms in both the and equation. In the k equation, the correlation

Ui'vi, is modeled as

u i'v i' = 2k exp (-B k t,/t e) (21)

where t e is the time scale of the energetic eddies and in the context of the
model is given by kand _ t e here has often been interpreted as the

lifetime of a typical turbulence eddy by [56,57] in their Lagrangian

calculations. The time ratio t,/t e is the Stokes number [12] measuring the

response of how quick the particle responds to a typical eddy turnover. To

generalize the model, the constant B k was introduced and was determined by

limiting behavior for small particles, which corresponded to the linear

perturbation analysis with respect to a passive additive by [42]. A similar

approach has been used by Pourahmadi and Humphrey [58] and Gavin et. al [59] in

the k-equation. Their model for this term is summarized:

U i'v i ' = 2k / (i + t,/te) (22)

It can easily be shown, for small values of t,/te, that this model yields the

same results as equation (21), depending on the numerical value of Bkand the

form assumed for t e. Genchev and Karpuzov [60] assumed t, >> teSO that
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.-Oand no model was required. However they also assume that the
particles will follow the mean fluid motion which implies t, << te. This

inconslstancy plum the lack of model comparisons with data in their paper
casts doubt on their model.

The model of Elgobashi and Abou-Arab [53] for the correlation u i'vi' is

based on Chao's [61] solution of the linearized Lagrangian equation of motion

of a spherical particle in a turbulent flow. Their model, in its most general

form, is extremely difficult to implement, especially for wall-bounded two-

phase flows, owing to the necessity of computing definite integrals over all

possible frequencies of fluid motion at every grid point. Given the

uncertainties of the model it seems more appropriate to use a relatively

simple model which exhibits the correct asymptotic behavior such as [52] and

[58] (c.f. [62]).

As in modeling slngle-phase flows it is the _-equation which provides

the greatest uncertainty. In the model of Chen and Wood [26], particle-

hydrodynamic drag force was assumed to follow Stokes law, thus the last term

of equation (20) became

2v P-_ aui' aFpi' _ 2 _-p [ v aui' [ avi' _ui' ] ] (23)
p 8x k 8x k t, p 8xj 8xj 8xj

A similar exponential model was proposed for this term as given by equation

(19). Adlfferent time scale, i.e. Kolmogov's time scale T, was used here in

place of t e since the eddies contributing most to the high frequency
destruction mechanisms are the dissipative eddies which have a time scale

z/t _ul' _vl'
(r/s) [ - T ]. In [26] it was assumed that --and--are completely

Oxj _xj

uncoupled on this time scale since t, >> 7in most practical zas-solid

turbulent flows. In this limit equation (23) becomes (2E/t,)(_/p)

Clearly this model is not correct for very small particles or if t, : _ (T)
In the model of [58] an additional term is added but it assumes that the added

sink of dissipation to be a function of the integral time scale t, and hence
does not seem to be particularly appropriate. The extra sink and destruction

of E are modeled collectively by [53] as ctz _t (s/t) in equation (20) whereE t

equals E plus the extra dissipation terms appearing in the k-equatlon and

C E2 is kept the same constant as in the slngle-phase flows.

Extremely small particles which behave like trace molecules can be

treated as "passive" contaminants in the turbulent flow field. The behavior

of clouds of particles may be extended from single-particle dynamics when the

mixture is very dilute, say, the volume fraction of solid <49(i0-2)(c.f.

[7]). The subject of passive additive transport has been treated

extensively in the text of Monin and Yaglom [17]. See also the book by Hlnze

[63] and the review paper by Launder [64]. However, as the particle size

increases, dispersion will be opposed by particle inertia and so once some

critical particle size is exceeded, discrete particle dispersion must be

treated in a different way from "passive" contaminant diffusion.
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For dilute suspensions, the particle trajectories can be calculated by
the tracking approach. In this approach, particle dispersion due to
turbulence has been modeledby randomwalk [65] or a Monte-Carlo Stochastic
method [14,66]. These methods usually require extensive computational
storage and time to achieve a stationary average. In some Lagrangian
approaches, certain types of diffusional velocity have been modeled for the
particle motion which is usually proportional to the concentration gradient
[67,68]. In the two-fluid approach, particle dispersion due to turbulence
is represented by the correlations and/or In lower level
closures, these are usually modeled as a gradient type, Fickian diffusion
process:

8_"_p and pp'V i ' = Dp _8-_P (24)

pp,U i ' = D t 8x i 8xi

This constitutive equation is arbitrary at this point; however it may be

justified theoretically under certain conditions [17].
Values of Dt and Dp are calculated by the value of eddy viscosity v f in

most models by introducin_ :he turbulent Schmidt numbers. Thus Dt " vf/$°t

and Dp - ve/Sc_ or Dr - rp/Scp , where vp is the effective eddy

viscosity of the dispersed phase (to be discussed later). This type of

phenomenological approach for diffusion process heavily relies on the

classical theory of "fluid point" diffusion of Taylor (c.f. [63]). However,

when particle size increases, discrete particle diffusion is opposed by

particle inertia and the crossing-trajectories effect [69,70]. Since

heavier particles have the tendency to "fall out" from one eddy to another,

the correlations between particles and fluid velocities decrease. The

effect is to decrease the particle dispersion. The effect of the particle

inertia is not that clear. The inertia effect is characterized by the

particle relaxation time t,, which is controlled by the physical properties

of particles and the fluid, and the flow characteristics. There have been

arguments concerning the characteristic flow time scales [71,72,73] for

turbulent dispersion, although it has been indicated that the diffusivity of

the heavy particles is a little larger than that of the light particles.

Higher-order modelings such as the one developed by [74] are able to predict
this behavior. In the context of the lower-order phenomenological technique

just mentioned, the Schmidt number should be modeled taking into account

these effects. Recently one such model has been developed including a

constant drift velocity [75]

2 1/2
Dp = Z / (Z + 0.3 Ioi - Vii / vj'vj') (2S)

in which the coefficient 0.3 was tuned based on the lateral dispersion of

solid particles and measurements of [71,73].

However, in most models [26,53,58] the turbulent Schmidt number was

simply set to some constant value following the turbulent mass transfer of a

passive additive [76]. Some experimental data for gas-solid jets [77]

however indicate that a constant value of Sc t (i.e. independent of loading)

is appropriate. For axi-symmetric flows,Sc t = Scp = 0.7 is used [52,78].

In [53,58], the turbulent Schmidt number was simply chosen to be one.
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Finally, due to the contlnuum formulation, the correlation vi'v_has to

be modeled. Following the gradient type model for the gas phase, this

turbulent stress in the particulate phase is modeled from the Boussinesq

assumption:

@V! @Vj ) 2 I' = - -- + + - _iJ kp
v| 'vj Vp axj ax i 3

aV

+ Vp
_x

(26)

Earlier analytical studies [79,80] have contributed to the understanding of

some of the basic mechanisms of indirect interaction between particles

through the surrounding particles. This has lead Melville and Bray [44] in

their zero-equation modeling to propose

Vp

v t

- 1 / (1 + t,/te) (27)

Similar models have been used by [46,52] although the evaluation of t e is

somewhat different. Alonso [81] reviewed some developments in determining v

and recommended the use of Peskins [82] formula

Vp 2 2

--= i - (TL(/15y) (31< / (K + 2))
Y t (28)

whenK = 2t,/TLand T L : k/(. This model has been used hv [58,83].

Although this model recovers the correct form in the limit t,-_ 0 (i.e. rp - vt)

as equation (27), it will yield negative value of ¥p for reasonabie values ott,, T

and T L taken from pipe flow data. It is not likely that Vp < 0 is

physically appropriate, casting doubt on this model.

The modeling technique discussed above based on the continuum approach,

especially the modification of k and ( equation, has been extended and

adopted in some Lagrangian formulations. It has been shown by Shuen et. al

[6] that using the stochastic formulation instantaneous properties are

known; therefore, the extra dissipation term due to particles in the k

equation is exact and requires no modeling. This calculation is rather

complex and recently Mostafa and Mongia [75,91] have utilized the continuum

two-phase model of [58] to model this term in Lagrangian calculations. A

similar approach has been taken by [84] which highly simplified the

stochastic calculations. The extra sink term in the ( -equation is not

closed in Monte-Carlo stochastic formulation and is modeled through a

gradient type model in [6]. The sensitivity of this term has been tested

recently [85] and it has been found that this term is important in conjunction

with the modulation term in the k-equation. Incorporation of the effects of

particle on turbulence scale and the response of the dispersed phase in two-

phase turbulence models is essential for representing the structure of

partlcle-laden turbulent flows.
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For wall-bounded flows, boundary conditions for both gas and

particulate phases are required. This is particularly important when other

transport processes such as heat transfer and erosion are involved. The

effect of particles on boundary layer and viscous sublayer flows has been

studied analytically [10,86]. In most calculations, it is assumed that the

influence of the particulate phase on the velocity defect law is to modify the

logarithmic law in sublayer. Based on the Monin-Obakhov similarity analysis

for the analogous stable stratified atmospheric boundary layer, a set of

"wall functions" taking into account the effects of particle size and loading

was used by Chen [87]. The logarithm profile was modified as

u I p--f
- in [y+] + B- Rf

U, _ p

(29)

with B = 5 and particulate flux Richardson number

Rf = t_ i'FPi, - u i'uj'

8xj

(30)

The wall shear stress of the two-phase flow is related to that of the single-

phase flow by (c.f. [i0]).

Tw Pp
- 1 + --

Two P

(31)

The wall boundary conditions for particulate phase are complicated by

the unsteady particle-wall interactions such as deposition of particles on

the wall and re-entrainment mechanism. The resulting piece of information

from a multitude of particle-wall interactions can be assessed as the slip

velocity for the particulate phase at the wall [88,89]. An expression for

the slip velocity and wall shear stress was suggested by So. [88] based on

rarefied gas-dynamics theories. The lack of particle-particle interaction,

in accordance with the dilute suspension assumption gives a wall slip

velocity:

8V

vlw = _p' -- (32)
an w

and stress

i 2
J

Tpl 2-f - Fp v-3 (vi vi )
1/2

W

(33)

where the fluid-particle interaction length _p'is given
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_p' = [(Ul' - Vl') z] t,

and Vy is set to be zero at the wall following an impermeable wall condition

for particles. These expressions have been utilized by [58,87] for their

wall-bounded calculations. The effect of the walls on the particle draK

coefficient, the particle turbulent intensity and the correlation ui'v i '

and ul'(u i' - v|') , which represent the particle-gas interaction and

contribute to the modulation of the wall turbulence structures, has been

studied recently by Risk and Elghobashi [90] by including Magnus force and

lifting force in the particle dynamic equation. Their analysis can be

incorporated for detailed gas-particle wall function development.

Recent developments of two-phase turbulence models were reviewed.

Most existing models are constructed following the familiar form of single-

phase turbulence models. As in single-phase problems, most models are

addressed through classical Bousslnesq gradlent-type diffusion processes

and scaling arguments. Most models are also developed based on the treatment

of turbulent suspensions in the context of the continuum, two-fluid theory of

mixtures.

The appeal of the two-phase closure technique embedded in the two-fluid

continuum formulation is that it provides an axiomatic approach on which the

analogous single-phase turbulence models are built. In practice, one is

confronted with the difficulty of constructing specific constitutive models

for the stresses and momentum transfer, turbulent mass fluxes and mass

transport in which additional fluctuating fields are magnified by the

presence of solid particles. Following the modeling approach in single-

phase flows, for simple flows (such as free shear flows) most two-phase models

were addressed through classlcal Boussinesq assumptions and characteristic

scaling arguments. Depending on the relaxation time scales, particles not

only influence the higher wave number end of the gas-phase turbulence

spectrum [10,25], but also the energy-containlng range of the turbulence

spectrum whlch is largely responsible for mixing [72,73]. Most proposals

for treating turbulence modulations based on the two-equation k-E model were

not particularly successful for complex flows since they did not incorporate

the turbulence scale effects and the response of the dispersed phase.

Higher-order closure schemes or closures involving multiple-scale

characterization of the gas turbulent spectrum are obviously called for, and

some steps in this direction have been taken recently [74,87]. Additional

measurements similar to that of [72,73] are also needed to gain a better

understanding of particle-turbulence scale interactions and modulations in

multlphase flows.

The real challenge and difficulty in developing a two-phase closure

model for particle dispersion in connection with the two-fluid formulation is

encountered in wall-bounded flows and poly-dispersed systems.

Establishment of wall boundary conditions for the particle concentration and

velocities depend on the interaction of particles with the wall. Particle-

wall collisions are not always elastic and the phenomena is unsteady. The

slip velocity boundary condition based on rarefied gas dynamics concepts is
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probably not appropriate since the normal component of averaged velocity is

not zero. Detailed measurements [92,93] and analysis [93,94] are needed.

To extend the two-fluid continuum mixture theory for poly-dispersed

situations, the continuous droplet models such as the one described in [95]

can be used. The particles are represented by a statistical distribution

function in a multi-dimensional space of droplet size, velocity location and

time. The properties of particles are determined by solving the

conservation of the distribution function.

One merit of the two-phase turbulence models developed on the continuum

formulation is that they can be accommodated into the Lagrangian approach and

do not require excessive computational storage and time [75,84].

Incorporation of more physics as turbulent combustion, evaporating sprays,

boundary layer dust ingestion, poses no conceptual difficulties. Further

testing and validation through well-defined experiments for more complex

flows to establish the universality of the model constants are highly

recommended.
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